
How probable is an infinite sequence of heads?

Timothy Williamson

Isn’t probability 1 certainty? If the probability is objective, so is the
certainty: whatever has chance 1 of occurring is certain to occur. Equiva-
lently, whatever has chance 0 of occurring is certain not to occur (it has no
chance of occurring). If the probability is subjective, so is the certainty: if
you give credence 1 to an event, you are certain that it will occur. Equiva-
lently, if you give credence 0 to an event, you are certain that it will not
occur (it has no weight in your calculations of expected outcomes). And so
on for other kinds of probability, such as evidential probability.

The formal analogue of this picture is the regularity constraint: a prob-
ability distribution over sets of possibilities is regular just in case it assigns
probability 0 only to the null set, and therefore probability 1 only to the
set of all possibilities. For convenience, restrict the term ‘possibility’ to
those maximally specific in relevant respects. Thus possibilities are mutu-
ally exclusive and jointly exhaustive. The probability of a possibility is just
the probability of its singleton. Assume that each possibility has a well-
defined probability. Then regularity is equivalent to the constraint that
every possibility has a probability greater than 0.

Regularity runs into notorious trouble when the set of possibilities is
infinite, given the standard mathematics of probabilities, on which they
are real numbers between 0 and 1. Indeed, when the set of possibilities is
uncountable, no probability distribution is regular. For let An be the set
of all possibilities of probability at least 1/n (n is a natural number). An

has at most n members, otherwise its probability exceeds 1. If a possi-
bility has probability greater than 0, it belongs to An for some natural
number n. But the union of the An over all natural numbers n is a
countable union of finite sets and therefore itself countable. Thus only
countably many possibilities have probability greater than 0, so uncount-
ably many possibilities have probability 0. For example, suppose that a
rotating pointer can stop at any point on a circle. As space is usually
conceived, the circle comprises uncountably many points. For each point,
it is neither objectively nor subjectively certain that the pointer will not
stop at it. Yet on any real-valued probability distribution, for almost
every point on the circle, the real-valued probability that the pointer will
stop at it is 0.
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The trouble is not confined to uncountable cases. Consider a countable
infinity of points on the circle. Call them the select points. If we treat all the
points as the real numbers between 0 and 1 (including 0 but excluding 1), we
can treat the select points as the rational numbers between 0 and 1. Since
nothing favours one point over another, the probability of the pointer’s
stopping at a given point conditional on its stopping at a select point should
be the same for each select point; let it be x. By the Archimedean principle,
for any real number x greater than 0, nx exceeds 1 for some natural number
n. Thus if x were greater than 0, for any n select points the probability of the
pointer stopping at one of them conditional on its stopping at a select point
would exceed 1. Therefore the probability of the pointer’s stopping at a
given select point conditional on its stopping at a select point is 0, even
though it is neither objectively nor subjectively certain that it will not stop
at that point, conditional on its stopping at a select point.

An attractive response is to deny the assumption that probabilities must
be real-valued. In non-standard analysis, the numbers between 0 and 1
include infinitesimals, greater than 0 but less than 1/n for each (standard)
natural number n. That avoids the troubles above. Each point can have the
same infinitesimal probability of being stopped at (Bernstein and Watten-
berg 1969). Thus infinitesimal probabilities appear to rehabilitate the
equation of probability 1 with certainty and the equivalent conception of
probability 0. For example, David Lewis appeals to them in requiring that
the credence of a proposition is zero only if it is ‘the empty proposition,
true at no worlds’; he justifies the requirement ‘as a condition of reason-
ableness’ on the grounds that one who started out by violating it and then
learned from experience by conditionalizing ‘would stubbornly refuse to
believe some propositions no matter what the evidence in their favour’
(1986: 88). In the case of objective probability, he was also ‘inclined to
think that [...] there are no worlds where anything with zero chance
happens; the contrary opinion comes of mistaking infinitesimals for zero’
(1986: 333).

Do infinitesimal probabilities really rehabilitate the equation of prob-
ability 1 with certainty or the equivalent conception of probability 0?
Consider one of the simplest cases. A fair coin will be tossed infinitely
many times at one second intervals. The tosses are independent. Let H(1...)
be the event that every toss comes up heads. It is one of uncountably many
possible outcomes. It is not subjectively certain that H(1...) will not occur.
Given a suitable indeterminism, it is not objectively certain that H(1...) will
not occur. Henceforth, we need not specify what kind of probability is in
play, because the argument is the same for all kinds. In standard probabil-
ity theory, the only probability H(1...) can have is 0, since for each natural
number n its probability is no greater than the probability of an initial
sequence of n tosses, 1/2n. That argument fails in the non-standard setting,
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since it does not exclude the assignment of an infinitesimal probability to
H(1...).1 Let us reason in this non-standard framework.

Let H(1) be the event that the first toss comes up heads and H(2...) the
event that every toss after the first comes up heads. Thus H(1...) is
equivalent to the conjunction H(1) & H(2...). Prob(X) is the probability of
X and Prob(X | Y) the probability of X conditional on Y. By the nature of
conditional probabilities:

(1) Prob(H(1...)) = Prob(H(1) & H(2...)) =
Prob(H(1)).Prob(H(2...) | H(1))

Since the coin is fair:

(2) Prob(H(1)) = 1/2

Since the tosses are independent:

(3) Prob(H(2...) | H(1)) = Prob(H(2...))

By (1)–(3):

(4) Prob(H(1...)) = Prob(H(2...))/2

But H(1...) and H(2...) are isomorphic events. More precisely, we can map
the constituent single-toss events of H(1...) one-one onto the constituent
single-toss events of H(2...) in a natural way that preserves the physical
structure of the set-up just by mapping each toss to its successor. H(1...)
and H(2...) are events of exactly the same qualitative type; they differ only
in the inconsequential respect that H(2...) starts one second after H(1...).
That H(2...) is preceded by another toss is irrelevant, given the indepen-
dence of the tosses. Thus H(1...) and H(2...) should have the same prob-
ability. To make the point vivid, suppose that another fair coin,
qualitatively identical with the first, will also be tossed infinitely many
times at one second intervals, starting at the same time as the second toss
of the first coin, all tosses being independent. Let H*(1...) be the event that
every toss of the second coin comes up heads, and H*(2...) the event that
every toss after the first of the second coin comes up heads. Then H(1...)
and H*(1...) should be equiprobable, because the probability that a coin
comes up heads on every toss does not depend on when one starts tossing,
and there is no qualitative difference between the coins. But for the same
reason H*(1...) and H(2...) should also be equiprobable. These two infinite
sequences of tosses proceed in parallel, synchronically, and there is no
qualitative difference between the coins; in particular, that the first coin

1 Lewis appeals to infinitesimals in defence of regularity in this very case (1986: 90).
Vann McGee uses them in a similar capacity (1994: 179–80).
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will be tossed once before the H(2...) sequence begins is irrelevant. By
transitivity, H(1...) and H(2...) should be equiprobable:

(5) Prob(H(1...)) = Prob(H(2...))

By (4) and (5):

(6) Prob(H(1...)) = Prob(H(1...))/2

But even in non-standard analysis the principle x = x/2 → x = 0 holds
universally, for non-standard analysis concerns non-standard models of
the very same first-order theory as standard analysis. Thus (6) yields:

(7) Prob(H(1...)) = 0

This argument for (7) is neutral between standard and non-standard
probabilities. Even when infinitesimal probabilities are allowed, the nature
of the case still yields the conclusion that the probability of an infinite
sequence of heads is 0. The same goes for every other specific outcome. Yet
they are all possible, and one of them will be actual. Each outcome has
probability 1 of not occurring, but it is not certain that it will not occur.
Regularity fails. Infinitesimal probabilities may be fine in other cases, but
they do not solve the present problem.

Is the underlying problem the attempt in such cases to measure prob-
abilities by numbers, standard or non-standard? If so, we might fall back
on ordinal relations of comparative probability, such as ‘is more probable
than’ (>) and ‘is at least as probable as’ (�). Let us not even assume that
comparative probability involves a total ordering. Thus ‘X > Y’ and
‘Y � X’ may be contraries rather than contradictories. If � is a contra-
diction (corresponding to the null set of possibilities), ‘X > �’ replaces the
claim that X has probability greater than 0. Thus regularity becomes the
constraint that X > � (and ¬� > ¬X) unless X corresponds to the null set
of possibilities. Can the claim that H(1...) is more probable than a con-
tradiction be defended in this purely qualitative setting?

A promising principle for comparative probability is this:2

(!) If X and Y are each incompatible with Z, then
(a) X > Y if and only if X ⁄ Z > Y ⁄ Z
(b) X � Y if and only if X ⁄ Z � Y ⁄ Z

(Unless comparative probability is a total ordering, (!a) and (!b) are not
equivalent.) One motivation for (!) is that if X and Y are each incompatible

2 (!) corresponds to de Finetti’s fourth axiom of comparative probability (1964: 100).
His other three axioms correspond to regularity and the linearity and transitivity of
comparative probability. His first three axioms hold on any linear ordering of
contingencies, with the necessities added at the top and the impossibilities at the
bottom.
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with Z, then the possibilities of X without Y are exactly the possibilities of
X ⁄ Z without Y ⁄ Z and the possibilities of Y without X are exactly the
possibilities of Y ⁄ Z without X ⁄ Z; since those possibilities should
determine any probabilistic difference between X and Y or between X ⁄ Z
and Y ⁄ Z respectively, the comparative probability relations within the
two pairs should be the same. Without (!), what substance is there to
regarding > and � as relations of comparative probability?

Now let X be H(1...), Y be � and Z be ¬H(1) & H(2...). Clearly, H(1...)
and � are both incompatible with ¬H(1) & H(2...). Thus (!a) yields:

(8) H(1...) > � if and only if H(1...) ⁄ (¬H(1) & H(2...))
> � ⁄ (¬H(1) & H(2...))

But H(1...) ⁄ (¬H(1) & H(2...)) is logically equivalent to H(2...) (under
appropriate definitions), and � ⁄ (¬H(1) & H(2...)) to ¬H(1) & H(2...).
Given the natural constraint that comparative probability relations are
invariant across logical equivalents, (8) simplifies thus:

(9) H(1...) > � if and only if H(2...) > ¬H(1) & H(2...)

Since ¬H(1) & H(2...) and H(1...) differ only on the outcome of the first
toss, which is equally likely to be heads or tails, and the other tosses are
independent of it, the two events are equiprobable. Consequently:

(10) ¬H(1) & H(2...) � H(1...)

Since X > Y and Y � Z entail X > Z by the logic of comparatives, (10) and
the left-to-right direction of (9) yield:

(11) H(1...) > � only if H(2...) > H(1...)

The considerations above in favour of (5) concerned only comparative
probability relations. Thus in the present notation they become consider-
ations in favour of:

(12) H(1...) � H(2...)

Since (12) is inconsistent with the consequent of (11):

(13) Not H(1...) > �

A sequence of infinitely many heads is not more probable than a contra-
diction; regularity fails.

We can reach a similar conclusion using (!b) in place of (!a). Let X be �,
Y be H(1...) and Z be ¬H(1) & H(2...). Thus (!b) yields:

(14) � � H(1...) if and only if � ⁄ (¬H(1) & H(2...))
� H(1...) ⁄ (¬H(1) & H(2...))

By the same simplifications as before, (14) becomes:
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(15) � � H(1...) if and only if ¬H(1) & H(2...) � H(2...)

From (10) and (12) by transitivity:

(16) ¬H(1) & H(2...) � H(2...)

Thus from (16) and the right-to-left direction of (15):

(17) � � H(1...)

A contradiction is at least as probable as an infinite sequence of heads.
Thus (!a) and (!b) each separately generate the analogue for comparative

probability of the conclusion that an infinite sequence of heads has prob-
ability 0. The problem for regularity does not lie in the use of numerical
rather than comparative probability, given natural constraints on the
latter.

On some regular non-standard probability distributions, the difference
in probability between H(1...) and H(2...) is infinitesimal. For any stan-
dard probability distribution is approximated to within infinitesimal dif-
ferences by a regular non-standard distribution (Kraus 1968, McGee
1994). Thus the standard probability distribution on which H(1...) and
H(2...) both have probability 0 is approximated by a non-standard distri-
bution on which they both have infinitesimal probabilities. By (4) these
probabilities will differ, by an infinitesimal. However, anyone who thinks
regularity worth defending by appeal to infinitesimals must think that the
difference between probability 0 and an infinitesimal probability matters,
and therefore that at least some infinitesimal differences in probability
matter. Moreover, the argument that H(1...) has probability 0 is not merely
an argument that its probability is at least approximately 0. In particular,
the considerations in favour of the crucial claim (5) that H(1...) and H(2...)
are equiprobable do not merely favour the claim that they have at least
approximately the same probability; they favour the claim that H(1...) and
H(2...) have exactly the same probability. For the relevant sequences of
events are of exactly the same qualitative type. Recall that H*(1...) is the
event that the second coin comes up heads on every toss. H(1...) has
exactly the same chance as H*(1...) and H*(1...) has exactly the same
chance as H(2...). It would be unreasonable to give H(1...) more or less
credence than H*(1...) or H*(1...) more or less credence than H(2...).
Likewise for other kinds of probability. Sometimes the problem with
regular non-standard distributions is that too many are eligible: the assign-
ment of one infinitesimal probability rather than another to a given pos-
sibility seems arbitrary (Elga 2004). Here, by contrast, the problem is that
too few are eligible: none satisfies the non-arbitrary constraints.

One advantage of regularity is that it makes sense of the definition of the
conditional probability P(X | Y) as the ratio P(X & Y)/P(Y) whenever Y is
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possible. But this is not decisive, for conditional probability can be treated
as primitive, subject to appropriate axioms, rather than being defined as a
ratio of unconditional probabilities (Popper 1955, Renyi 1955). The argu-
ments above do not tell against primitive conditional probabilities on
H(1...) ((1) above concerns the conditional probability Prob(H(2...) |
H(1)), but since Prob(H(1)) is 1/2, (1) does not depend on whether condi-
tional probability is primitive or defined). However, such probabilities do
not dispel all the present mysteries.

Let the ticket t(X) pay a wonderful prize if X obtains and otherwise
nothing (the prize is the same whatever X is). You should be indifferent
between t(H(2...)) and the pair of tickets t(H(1...)) and t(¬H(1) & H(2...)),
for the outcome is exactly the same in every case, since H(2...) obtains if
and only if either H(1...) or ¬H(1) & H(2...) obtains (they cannot both
obtain). You should prefer that pair of tickets to t(H(1...)) alone, for to
throw away t(¬H(1) & H(2...)) is simply to throw away one chance of a
wonderful prize. Thus you should prefer t(H(2...)) to t(H(1...)). But since
H(1...) and H*(2...) are isomorphic independent events as already dis-
cussed, you should be indifferent between t(H(1...)) and t(H*(2...)). There-
fore you should prefer t(H(2...)) to t(H*(2...)). By an exactly symmetric
argument, you should prefer t(H*(2...)) to t(H(2...)). What has gone
wrong?

Cantor showed that some natural, apparently compelling forms of rea-
soning fail for infinite sets. This moral applies to forms of probabilistic and
decision-theoretic reasoning in a more radical way than may have been
realized. Infinitesimals do not solve the problem. Can we do better by
weakening (!)?3

New College
Oxford OX1 3BN, UK

timothy.williamson@philosophy.ox.ac.uk

References

Bernstein, A. R. and F. Wattenberg. 1969. Non-standard measure theory. In
Applications of Model Theory of Algebra, Analysis, and Probability, ed. W. A. J.
Luxemburg. New York: Holt, Rinehard and Winston.

Elga, A. 2004. Infinitesimal chances and the laws of nature. Australasian Journal of
Philosophy 82: 67–76.

Finetti, B. de. 1964. Foresight, its logical laws, its subjective sources. In Studies in
Subjective Probability, ed. H. Kyburg and H. Smokler. Huntington, N.Y.: Krieger.

Kraus, P. H. 1968. Representation of conditional probability measures on Boolean
algebras. Acta Mathematica Academiae Scientiarum Hungaricae 19: 229–41.

3 Thanks to Frank Arntzenius and Adam Elga for very helpful discussion.

how probable is an infinite sequence of heads? 179

mailto:williamson@philosophy.ox.ac.uk


Lewis, D. K. 1986. Philosophical Papers: Volume II. Oxford: Oxford University Press.
McGee, V. 1994. Learning the impossible. In Probability and Conditionals: Belief

Revision and Rational Decision, eds. E. Eells and B. Skyrms. Cambridge:
Cambridge University Press.

Popper, K. R. 1955. Two autonomous systems for the calculus of probabilities. British
Journal for the Philosophy of Science 6: 51–57.

Renyi, A. 1955. On a new axiomatic theory of probability. Acta Mathematica Aca-
demiae Scientiarum Hungaricae 6: 285–335.

Privative causality

John Haldane

For want of a nail, the shoe was lost:
For want of the shoe, the horse was lost;
For want of the horse, the rider was lost;
For want of the rider, the battle was lost;
For want of the battle, the kingdom was lost,
And all for the want of a horseshoe nail.

(Anon. Medieval Rhyme)

1. Wants of provision

Among the kinds of explanation given for the occurrence or non-
occurrence of events and processes, the obtaining or non-obtaining of
states and conditions, and the existence or non-existence of substances and
characteristics, are ones that refer to absences, deficiencies and wants of
provision:

The smoke alarm failed to go off because there was no battery in it.
The engine didn’t start because there was no gas in the combustion

chamber.
The circuit didn’t operate because the last connection was missing.
The plant died because it didn’t get any water.
The dog remained asleep because the clock didn’t chime.
The man stumbled because he was unsighted.
The victim died because of a lack of air.
The astronaut was sick because of the absence of gravity.

Want of a battery, of gas, of a piece of wire, of water, of sound, of sight,
of air and of gravity here serve (partly) to explain occurrences or non-
occurrences. The ‘because’ in each case is of the same sort used to intro-
duce a causal factor (partly) productive of an outcome, as is evident from
the corresponding positive cases.
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